Something Powerful

Tell The Reader More

The headline and subheader tells us what you're offering, and the form header closes the deal. Over here you can explain why your offer is so great it's worth filling out a form for.

Remember:

  • Bullets are great
  • For spelling out benefits and
  • Turning visitors into leads.

DiversityNursing Blog

Lives Of Three Babies Rescued By 3D-Printed, Growth-Flexible Implants

Posted by Erica Bettencourt

Fri, May 01, 2015 @ 11:46 AM

Written by Markus MacGill

www.medicalnewstoday.com 

kaiba gionfriddo resized 6003D printing has come to the rescue of severe cases of a childhood disease in which the windpipe is softened, leading to collapse of the airway and breathing failure. Previously lacking any adequate intervention, tracheobronchomalacia has found an innovative fix in three babies whose condition presented them with little chance of reaching young childhood.

Researchers at the University of Michigan's C.S. Mott Children's Hospital in Ann Arbor say the three boys have become the "first in the world to benefit from groundbreaking 3D-printed devices" to stent their airways in such a way as to allow the supports to keep up with their growth.

A follow-up of all three patients published in the journal Science Translational Medicine shows the personalized bioresorbable splint implants have worked with "promising results."

Pediatric tracheobronchomalacia (TBM) sees excessive collapse of the airways during breathing that can lead to life-threatening cardiopulmonary arrests (halted heart and breathing).

The cartilage supporting the airway can strengthen as children with the condition grow, the study paper goes on to explain, but severe cases of the disease require aggressive treatment - and those children are at "imminent risk of death."

Before this new approach to provide an early treatment option for TBM, the only conventional therapies available also carried life-threatening complications of their own.

Babies needed tracheostomy tube placement with mechanical ventilation, requiring prolonged hospitalization, and complications often led to cardiac and respiratory arrest. For example, the rate of respiratory arrest owing to tube occlusion runs as high as 43% of pediatric tracheostomy procedures a year.

Survivors: Kaiba, Ian and Garrett

But none of the newly developed 3D-printed devices have caused any complications for the three children treated, including Kaiba, who at 3 months old was the first to receive the new technology, 3 years ago. The stents were also inserted into 5-month-old Ian and 16-month-old Garrett.

Designed to accommodate airway growth while preventing external compression over a period of time before bioresorption, the technology allows for the particular problem of radial expansion of the airway over the critical period of growth. "If a child can be supported through the first 24 to 36 months of tracheobronchomalacia, airway growth generally results in a natural resolution of this disease," write the authors.

Senior author Dr. Glenn Green, associate professor of pediatric otolaryngology at C.S. Mott, says: "Before this procedure, babies with severe tracheobronchomalacia had little chance of surviving. Today, our first patient Kaiba is an active, healthy 3-year-old in preschool with a bright future." Dr. Green adds:

 

"The device worked better than we could have ever imagined. We have been able to successfully replicate this procedure and have been watching patients closely to see whether the device is doing what it was intended to do.

We found that this treatment continues to prove to be a promising option for children facing this life-threatening condition that has no cure."

 

Dr. Green describes in the video below how he and his colleagues at the University of Michigan worked on finding the solution.


Dr. Green strives enthusiastically for the lives of babies born with the condition, which he says in a post on the hospital's Hail to the little victors blog is often misdiagnosed as treatment-resistant asthma. He adds that it is a rare congenital condition affecting about 1 in 2,200 births, and the severe cases are even rarer, with most children growing out of the milder cases by 2 or 3 years of age.

"Kaiba's parents, April and Bryan, were left watching helplessly each time he stopped breathing, praying that something would change and doctors' predictions that he would never leave the hospital again weren't true," writes Dr. Green in 2013.

The 3D-printed splints were computational image-based designed to be customizable so that the following parameters could be made bespoke to the individual patient's anatomy on "the submillimeter scale:"

  • Inner diameter, length and wall thickness of the device
  • Number and spacing of suture holes.

Not being a closed cylinder, the design of the tubes gave an opening to allow placement but also expansion of the radius as the airways grew. All the inserts placed around the airways were made of polycaprolactone, a polymer that harmlessly dissolves in the body at a rate to allow the technology time to support the growing cartilage.

For Garrett's bespoke device on his left bronchus, the opening had a spiral shape to it, to allow a device to be fitted concurrently around, and grow with, his right bronchus, too.

Freedom from intensive care treatments

The Michigan team also share findings showing that the success of the devices meant the young children were able to come off of ventilators and no longer needed paralytic, narcotic and sedating drugs.

There were improvements in multiple organ systems and problems that had prevented the babies from absorbing food, so now they could be free of intravenous therapy.

The research doctors had received urgent approval from the US Food and Drug Administration to do the procedures, but it is early days for the strategy to become routine for babies with TBM. The case report published today was not designed to test the safety of the devices - so it may yet be possible that rare complications are found to result from treatment in some cases. Dr. Green says:

"The potential of 3D-printed medical devices to improve outcomes for patients is clear, but we need more data to implement this procedure in medical practice."

The specialist surgeon performing the operations, Dr. Richard Ohye, head of pediatric cardiovascular surgery at C.S. Mott, believes the cases provide the groundwork for a potential clinical trial in children with less-severe forms of TBM.


Topics: 3-D printing, medical technology, health, healthcare, children, medical, patients, hospital, patient, treatment, babies, TBM

3-D printing Used To Guide Human Face Transplants

Posted by Erica Bettencourt

Mon, Dec 01, 2014 @ 01:21 PM

141201090636 large resized 600

Researchers are using computed tomography (CT) and 3-D printing technology to recreate life-size models of patients' heads to assist in face transplantation surgery, according to a study presented today at the annual meeting of the Radiological Society of North America (RSNA).

Physicians at Brigham and Women's Hospital in Boston performed the country's first full-face transplantation in 2011 and have subsequently completed four additional face transplants. The procedure is performed on patients who have lost some or all of their face as a result of injury or disease.

In the study, a research team led by Frank J. Rybicki, M.D., radiologist and director of the hospital's Applied Imaging Science Laboratory, Bohdan Pomahac, M.D., lead face transplantation surgeon, and Amir Imanzadeh, M.D., research fellow, assessed the clinical impact of using 3-D printed models of the recipient's head in the planning of face transplantation surgery.

"This is a complex surgery and its success is dependent on surgical planning," Dr. Rybicki said. "Our study demonstrated that if you use this model and hold the skull in your hand, there is no better way to plan the procedure."

Each of the transplant recipients underwent preoperative CT with 3-D visualization. To build each life-size skull model, the CT images of the transplant recipient's head were segmented and processed using customized software, creating specialized data files that were input into a 3-D printer.

"In some patients, we need to modify the recipient's facial bones prior to transplantation," Dr. Imanzadeh said. "The 3-D printed model helps us to prepare the facial structures so when the actual transplantation occurs, the surgery goes more smoothly."

Although the entire transplant procedure lasts as long as 25 hours, the actual vascular connections from the donor face to the recipient typically takes approximately one hour, during which time the patient's blood flow must be stopped.

"If there are absent or missing bony structures needed for reconstruction, we can make modifications based on the 3-D printed model prior to the actual transplantation, instead of taking the time to do alterations during ischemia time," Dr. Rybicki said. "The 3-D model is important for making the transplant cosmetically appealing."

The researchers said they also used the models in the operating room to increase the surgeons' understanding of the anatomy of the recipient's face during the procedure.

"You can spin, rotate and scroll through as many CT images as you want but there's no substitute for having the real thing in your hand," Dr. Rybicki said. "The ability to work with the model gives you an unprecedented level of reassurance and confidence in the procedure."

Senior surgeons and radiologists involved in the five face transplantations agreed that the 3-D printed models provided superior pre-operative data and allowed complex anatomy and bony defects to be better appreciated, reducing total procedure time.

"Less time spent in the operating room is better for overall patient outcomes," Dr. Pomahac added.

Based on the results of this study, 3-D printing is now routinely used for surgical planning for face transplantation procedures at Brigham and Women's Hospital, and 3-D printed models may be implemented in other complex surgeries.

Source: www.sciencedaily.com

Topics: transplants, 3-D printing, CT images, procedure, technology, health, healthcare, nurses, doctors, medical

Recent Jobs

Article or Blog Submissions

If you are interested in submitting content for our Blog, please ensure it fits the criteria below:
  • Relevant information for Nurses
  • Does NOT promote a product
  • Informative about Diversity, Inclusion & Cultural Competence

Agreement to publish on our DiversityNursing.com Blog is at our sole discretion.

Thank you

Subscribe to Email our eNewsletter

Recent Posts

Posts by Topic

see all